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ABSTRACT 

The ambient seismic noise is modeled by a single Gaussian 

population from which independent realizations or states are taken 

as input to tuned filters w.;.th spectral neaks matched to those ob- 

served in noise samples, for example at .2 cps and 2.   cps. For 

each spectral noise peak, the realization on channel i + 1 is equal 

to a constant times the realization on channel i plus another constant 

times a new realization on channel i + 1. The constants defining the 

Markov process can be used to theoretically derive the associated 

power spectral matrix of the noise model.  The model can be extended 

to dispersive systems by using a set of constants and time lags to 

relate the noise on channel i to that on channel i + 1, 

A vertical array signal model is also given.  The purpose is to 

efficiently generate noise and/or signals at prescribed S/N ratios. 

The noise covariance structure is close to that observed naturally 

and is known exactly for the noise model realizations.  Thus the 

spectral covariance of the noise is given exactly subject only to 

roundoff error, and conditions of stationarity and equilibrium are 

satisfied by the data generated for testing and designing multichannel 

filters. 



1.     INTRODUCTION 

The ambient seismic noise is modeled as a multi- 

channel Gaussian Markov process.  Some arguments for this 

are based on the following observations: 

(1) Sharply tuned spectral peaks at .2 and 2 cps 

remain fixed for long periods of time. 

(2) Principal spectral peaks and the spectrum 

between the peaks are realized as stationary Gaussian 

processes on time scales of more than several hours, 

although some small intermediate frequency peaks are not 

positive to tests for Gaussian stationarity. 

(3) On longer time scales, the power spectrum may 

be observed to change markedly, but the coherency between 

channels is comparatively constant. 

The synthesized noise combines linearly additive 

independent stationary Gaussian processes.  Two mixed 

processes are taken to charactize the .2 cps and 2 cps 

noise peaks.  These are modeled with two sharply tuned 

linear filters. A spatial correlation will result from a 

Markov chain, in the form 

N 

K.tl-I^Kj.J^t-r 

r     i 
where liLj .J" are orthogonal white random functions 

associated with each channel and L   is the fixed linear 
t-T 

filter response of a noise process.  Time independent 

constants determines a process which is space-linear and 
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which is space-stationary if R .= R   . 

Although Markov models may be physically interest- 

ing as retlecting underlying differential equations of 

the system, the purpose here is to show that simple models 

can qualitatively account for many of the observed propert- 

ies of the noise.  Such models are useful for efficiently 

generating standard test data on a digital computer for 

checkout of vertical array processors and for preliminary 

evaluation and ranking of seismic signal processors. 
2-     MODELING THE LINEAR FILTER RESPONSE AT THE SURFACE 

OF THE EARTH 

Ambient additive noise is represented by white 

Gaussian inputs to linear filters; the output of the 

filters are added. 

w 
w 

L(f) 

H(f;  - 

{N] 

Figure 1 

[lLj  and |lHj- represent independent realizations of white 

noise from a Gaussian population.  L(f) and H(f) are the 

low and high frequency tuned filters. For example, the 

filters are associated with the ,2 cps microseism peak 

and the 2 cps noise peaks, respectively.  Each tuned filter 

L(f) and H(f) is modeled by a series of damped oscillators. 

The frequency response of a tuned filter is determined by 

selecting appropriate values for the peak frequency f and 
o 

Q (related to bandwidth as f /Af) .  In the following equat- 

ion we represent the spectral realization of noise from such 

a system. 
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(»(«)} {CL(£)}  [• 
1     + 

2 2 
QT(fT    -    f ^ 

iff" 

+  G{cH{f)}   [- 1 

(1) 

QH(fL   "   f2) 
"  {^f}  +   {Hf} 

1  + 
iff. 

The curley brackets represent the realization of a state 

from a random population. The samples are statistically 
independent. 

E (  {CLlf'}   {CH(£>}  )  "   0 

The input random functions are white, with variance 

or power,   P   . 
o 

E (K(f)} (v7^}= E ( {CH<£)} (v77)) ■ »o- 
The power spectral density corresponding to this noise model 

has eight unknown parameters adjustable to approximate noise 

with two principal spectral peaks. 

E ( {«(«>} {«(f)} ) = Po [ 
N 

2    2  2 
Q (f  - f ) 

+ GP [■ 2    2 
V£L - £ * 

1  + 
( ff- 

N, 
H 

(2) 

    



Mliiriiii.ii.-iiiir»iiH
,aMb>., 

Writing difference equations for the system, we describe 

a linear noise prediction filter with constant coefficients. 

In practice, time realizations of white noise will be based 

on pseudo random numbers»  Specifying the parameters Q, f , 
o 

and N, a recursive filter subroutine RECFIL3 computes the 

approximate difference equation and filters the white random 

input. 

The low and high frequency component of the jrjwer 

spectral density are given separately^ 

X 
2    _ r i ^ L 
.,f " L 2    2   2 

(2a) 

,2  . r 1 A 
V£ - L 7~r^J 

1  + r0» (fL - ' h 
fL£ 

3.   SPATIAL MARKOV PROCESS 

The operator relating noise realizations obtained at 

different points in space is taken as a separable product 

of the random temporal functions,,  The power spectrum of the 

noise is based on a linear combination of the low and high 

frequency processes which are treated as statistically in- 

dependent.  The spatial covariance or covariance between 

channels will then be an interpolation between the Markov 

models characterizing the two processes.  The model which 

relates the two processes with constant coefficients is too 

simple to account for all the details of the highly complex 

dispersive filter response of the earth. However, without 
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backing into a wave mode representation which require boundary 

values of a known layered earth And a complex matrix describ- 

ing the mode excitation;  the constants relating the two pro- 

cesses on a channel can be extended to complex dispersive 

structures by convolution operators.  For efficient generation 

of large quanties of test data, it is sufficient only to model 

the system with constants, or w^th simple operators (e.g., 

.through time shifting, difference operators, etc.).  Coef- 

ficients selected should naturally lead to a noise covariance 

structure approximating the noise in the signal band. 

Vertical array sensors sample time fluctuations at a 

set of discrete points designated as channels.  The random 

time function on channel i corresponding to either the low 

or high frequency process is described as a state of channel 

i.  There are N channels denumerated from that closest to 

the surface in order of increasing distance from the surface. 

The system is limited to 2N orthogonal states, each associated 

uniquely with a process on each channel.  By means of a first 

order Markov chain applied to ec.ch process the noise on channel 

i+1 is related to noise on channel i.  Starting with the first 

channel, we restate (1) with more compact notation. 

K,f} ■ ci (1-aiai',i K,J+ vw»A'1' {»i,«} 
.th 
i (3) 
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The noise on the other channels are related through first 

order linear spatial difference operators for which the power 

spectral density of the noise is invariant. 

(4) 
where 

" 0 
s   r ■^ r- ~1 N 
vt'-i,«; {«i.fW 0 

Applying (4) to (3), we generate noise on channel i. 
1    i i   . 

KM) = ci I C k?i ^ ) U'*A>h K,f} ^i Z(„li b.) 
1 i 

d-b b r (a A 
(5) 

The solution for (3) and (4) given by (5) describes a general 

linear first orcar Markov chain with the initial realization 

taken from the channel closest to the earth's surface. A 

schematic of the system is shown on Figure 2, for three channels 

As a special case, the parameter a, and b. ( i > 1) are constant 

coefficients, the noise power spectrum is the same on each 

channel. 
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i 

{•i.J-«=1[«l-1K.t}+I«i'k{s.f}<1-"'*] 

Zshi W'Kt}*^ Kt)*-*n 
(6) 

a' = (1-a a ) 
m      mm 

b' = (1-b b ),5 
m     mm 

Figure 2 

The sealer gains on each channel given by c and d. may 

be generalized by associating a convolution operator of one 

or more time delays. This synthesizes a frequency dependent 

relationship between noise on two adjacent channels. This 

could be of some interest in accurately modeling a complex 

dispersive system. 

4.   SPECTRAL COVARIANCE 

Samples of seismic noise are obtained by implementing a 

vertical array of sefimometers and storing the noise measurementj 
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on magnetic tape.  The noise is sampled and digitized at 

equal time intervals.  Suppose we record a sample of N points 

on channel j. A sequence of such records can be ordered by 

the index k.  For each of the realizations, the spectrum of 

the iioise can be computed from zero frequency to the nyquist 

frequency 1/2 AT, with resolution 1/2T, where AT is the fixed 

sampling time-interval and T is the fixed half time length 

of the noise sample.  For realization k on channel j, this is 

represented as ^N fj-, a sequence of complex random numbers. 

The noise associated with the system is assumed zero 

mean, stationary and Gaussian. Thus the statistics are com- 

pletely characterized by the variance covariance matrix. This 

is usually given by the array of auto-correlation functions and 

cross-correlation functions which in principeil are computed with 

desired precision from a sample of multi-channel noise of suf- 

ficient time-length.  Each function in the array of correlation 

functions can be spectral analyzed.  The resulting array of 

spectrums is called the power spectral density of the system. 

According to the ergodic hypothesis, the power spectral density 

functions can also be obtained by dividing the multichannel noise 

sample into segments of fixed half time-length T, as k|N  |+T. 
i  j,tJ-T 

where 1/2T is the desired resolution in cycles per second.  By 

Fourier analysis of each record we obtain sample spectral 
k r    "> 

realizations  "[N. fi (this can now be done efficiently with the 

digital computer).  The array of functions representing the 

power spectral denrrty of the systet. is given by averaging the 

product of sample spectral realizations. 
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rs .f-
EC{vJK,J) = ^[4 kK,f}ktv7}]   <" 

in practice,   I is finite end „e obtein a semple power apectrai 
density. 

N . 

Srs  f= N    1    {N.  ^1    1N     D     r       :'* K  channels rs.f N L*     I r,fJ  I s,r/  s - 1,2.  v ,A.™-I- ,k channels (8) 

£inCe Srs/f 
is Hermitian, K real and (K-l)1  complex 

numbers need be computed for each frequency. 

Errors in SrS;f computed from real seismic data lead to 

considerable difficulty.  Even if the sample realizations are 

from a Gaussian population it is difficult to derive its probability 

distribution or confidence limits. An additional problem is eval- 

uation of the degree to which the sample is representative of a 

stationary Gaussian population.  More specifically, how should 

bias and scatter from non-stationary or higher moment components 

be accounted for? These problems of error analysis and stability 

of estimates are compounded by using sample covanance estimates 

to derive least squares operators.  These stem from the possible 

magnification of sampling errors in inverting the sample power 

spectral density matrix. 

For preliminary testing and comparison of filters, a statis- 

tical model such as that described in the previous section offers 

many advantages. Test data can be standardized and used for 

performance evaluation and comparison of various processors. 

It is flexible enough for designing models which reasonably 

approximate the noise on any physically-realized vertical array. 

The generation of test data by the computer is highly efficient. 

- 9 - 



Most importantly, the spectral covariance of the noise defined 

by (7) can be theoretically derived, is exact, and is subject 

only to roundoff errors rather than the much larger uncertain- 

ties of sample variance calculations.  Since the noise generated 

for testing is Gaussian and stationary, derived operators can 

be validly used outside of the fitting interval.  For the 

Gaussian Markov model given by (5), the theoretical power 

spectral matrix is derived in Appendix 1, with the results 

c^iven by (9) = 

Prs,f ' Cr
c
s ( A  *1  ) ^,f + Vs ( rll ^ ) £ (9) 

It can easily be shown that P   .is Hermitian, P    = P 
rs' sr'f   rs,f' 

The power spectral densivy matrix can be computed from (9). 

The terms n äj and TT bj yield information on the net stepout 

and attenuation in the cross-power terms due to complex coef- 

ficients in the Markov chain„  The terms c c and d d  also 
r s     r s 

can yield net stepouts. Also, for a highly complex dispersive 

medium cr Hs and d^ are frequency dependent „ No unique 

explanation can be given for stepouts in the noise, they may 

occur due to a number of effects such as body wave conversion, 

leaky modes, complex coupling between propagation modes, or 

complex dissipating mechanisms,  it should be clear, however, 

that a simple Markov process can be used to rapidly generate 

noise samples which reasonably approximate the average noise 

power spectral density matrix in the signal band, 
5-   VERTICAL ARRAY TRANSIENT SIGNAL MODEL 

In line with our objective of efficiently generating test 

data, the signal is modeled from a simple pulse formula that 

looks like a teleseismic wavelet. No attempt is made to physi- 

cally relate the synthetic signal to such phenomena as absorption, 

- 10 - 



displacement potential, etc. since we are only interested 

in testing filters.  In testing filters for signal distortion, 

it is useful to generate signals ranging from a high frequency 

near 2 cps and low frequency near 1 cps.  Since this reasonably 

covers a range of expected signal wave forms, signal distortion 

evaluations on a suite of such signals provides a robust test 

for signal distortion of filters.  For example, if a signal 

distortion test passes all of the test signals, then the 

distortion can probably be tolerated for any expected tele- 

seismic signal, 

The function used to generate the seismic wavelet has a 

single spectral peak at frequency f^ and bandwidth controlled 

by the parameter m.  Larger values of m gives smaller band- 

widths.  Using m of the order of 100, the signal looks some- 

what like a Ricker wavelet. 

VKf) = [4n f2t,2(m/2-l) + inft' (1-m) (m/2-1 ^ + (m-l)(m-2)] 

(m""3)  r k- 
t' expl^TTft'(m/2-lK] t'>0 

(10) 

where 

t' - t-t , the reduced time o 
and      w(t) = 0 t'<0 

For completeness, the wavelet generator includes the pP, 

specified by the echo-time and the apparent surface reflection 

coefficient at the source.  Further, the vertical array p-ghost 

is accounted for by specifying the echo-time and surface re- 

flection coefficient at the receiver. 
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6.   RESULTS 

As an example, noise on a vertical array is simulated 

using (6). The linear filter describing the noise of each 

channel is taken from (1) with N = 2, N = 1, Q = 3, Q = 6, 
L     H      L      H 

fj" .2cps, r« 2. cps and G = .012, This provides a reason- 

able approximation of the power spectral density of a sample 

of noise from Apache, Oklahoma.  The spectral power is shown 

on Figure 1.  The spatial Markov chain is obtained from (3) 

and (4).  Comparing (3) and (2). 

2 

From comparison with the power spectrum of a noise sample, 

we take 

a     = b     =  0 c c'    = P    =25.      d.d.   = GP    =1. 
* a iio 11 o 

ai ''9 V -*ii > i) ci = ci = 5-      di = di = i- 
For the constants describing the Markov chain, we take b- = .5 

reflecting small spatial correlation for the 2 cps components; 

and ai = .9 which determines a .9 ordinary coherency betwaen 

adjacent channels for the .2 cps noise component.  Although 

this is a simple space structure, it provides the following 

characteristics;  the coherency decreases with increasing 

frequency starting near .9 at .2 cps and reaching a low v^lue 

at 2 cps;  and the coherency between channels falls off pro- 

portional to distance.  Further, as control in utilizing the 
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synthetic data for filtering experiments, the power spectral 

density of the noise is made identical on each channel. Figure 

1 shows the power spectrum of the noise. Figure 2 shows a 

sample realization of synthetic noise for a six element vertical 

array. Figure 3 shows a plot of the ordinary coherencies 

against frequency. Figure 4 shows a matrix plot of the power 

spectral density, which is real for this particular example. 

Figure 5 shows six different signal models taken from (10). 
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0 001 » 

FREQUENCY (cps) «00 

Figure  1.     Peer Spectrum of Noise on Each Channel 
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APPENDIX 1 

Derivation of Power Spectral Density Matrix 

r s 

Prs,f = Vs £ I ( kfc ^ ) ( «ll ^ >-\\)h  ^-Vn/ 
1 1 

r s 

+ drd. 11 ( Mf! ^ ) ( rf! bj ) ^-Wh  «-W* 
The noise realizations are taken orthogonal as  from   (2a)   and 
(2b). 

rs 
r s 

,f = Vs ^ ( & a/j ) ( r?l ^ )  ^-\\^     t. 

drd8 K k?l Vj X jll ^ )  d-b^) H,f 

s r r r r 
= CrCs C «ll ¥j ) [ Z( rfl ^«j ) * K   J Vj )] 

L,f 

+  drds ( Jl ^ ) [ K Jl Vj )♦!(   J Vj )] 

H,f 

CrC8 ( r^l ^ ) L1  -  J Vj]    XT
2 

L,f 

-    -   1 - 



♦aÄ(ABj)IttVj] H^ r < s 

without loss in generality we may set a. = b. = 0 so that 
s        s 

r^l ajaj  = r?l bjbj  = 0 «or r < s. 

8 S 

Prs,f = CrCs C r?l ^ ) XL,f +  dÄ ( r?l ^ ) 

XTT   .  r < s and P       - = P H,f sr,f        rs,f. 
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